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Abstract: We provide a set of analytic fits to the radii of pre-mainsequence stars in the mass range
0.1 < M/M⊙ < 8.0. We incorporate the formulae in N -body cluster models for evolution from the
beginning of pre-main sequence. In models with 1 000 stars and high initial cluster densities, pre-
mainsequence evolution causes roughly twice the number of collisions between stars than in similar
models with evolution begun only from the zero-age main sequence. The collisions are often all part
of a runaway sequence that creates one relatively massive star.
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1 Introduction

Existing N -body simulations of stellar clusters usu-
ally begin with all stars on the zero-age main sequence
(ZAMS). Our motivation to include pre-mainsequence
(preMS) evolution in such models goes beyond the
desire for completeness. Given the upper mass limit
(M > 10M⊙) attributed to conventional star forma-
tion (Stahler et al. 2000) and because massive stars
are mainly found in the denser central regions of star
clusters (e.g. Hillenbrand & Hartmann 1998), Bonnell
et al. (1998) first suggested collisions between preMS
stars as a means to create massive stars. PreMS stars
are larger than their main-sequence counterparts and,
although the phase is short-lived, there is a possibility
that the increased collision likelihood has an effect.

The journey from molecular gas cloud to protostar
to the ZAMS is complicated. If random motions owing
to MHD turbulence are sustained inside a molecular
cloud, density inhomogeneities form and quickly col-
lapse under their own gravity to become protostars
(Stahler & Palla 2005). Typically, when modelling
preMS evolution, this self-gravitating fragment of a
protostellar cloud is where the models begin (Tout,
Livio, & Bonnell 1999) and is where we define the zero
age of the pre-main sequence.

In the 1950s, Henyey constructed the first detailed
numerical models of young stars, assuming that preMS
stars are radiatively stable (Henyey, Lelevier, & Levée
1955). This led to nearly horizontal tracks in the
Hertzsprung–Russell (H–R) diagram because the stars
contract at almost constant luminosity. Hayashi (1961)
realised that the H− opacity (and Kramer’s opacity,
when the temperature increases) forces the young stars
to radiate at nearly constant effective temperature Teff

and so to follow nearly vertical tracks in an H–R di-
agram. These young stars are in a quasi-hydrostatic
equilibrium. They contract on a time-scale much greater
than the free-fall time-scale (Hayashi 1961). Although
protostars are initially homogeneous and isothermal,
they collapse non-homogeneously, creating high cen-
tral density and temperature. It is this that eventu-
ally gives rise to the suitable conditions for hydrogen
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Figure 1: An H–R diagram showing the ZAMS in
bold and the preMS tracks for a range of masses.
The distinction between the vertical Hayashi track
and horizontal Henyey track is apparent here.
Data is taken from Tout et al. (1996) and Tout,
Livio, & Bonnell (1999).

fusion in stars with M > 0.08M⊙. Below this mass,
the central conditions are never sufficient for hydrogen
fusion and the stars collapse to become brown dwarfs
(Kumar 1963; Hayashi & Nakano 1963).

Stars with M ≤ 0.7M⊙ behave as though they
are fully convective and reach the ZAMS at the end
of their Hayashi track. When M ≥ 0.7M⊙, the star
develops a radiative core which is large enough that
it evolves more like Henyey’s initial models, turning
on to the near-horizontal Henyey track where contrac-
tion continues at approximately constant luminosity.
This behaviour can be seen in Figure 1, which shows
the calculated preMS tracks modelled by Tout et al.
(1999). However Stahler et al. (2000) argue that stars
more massive than 10M⊙ have their contraction dis-
rupted by both strong winds and radiation pressure
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and thus the conventional theory of protostellar infall
fails in this case. Zinnecker & Yorke (2007) discussed
three competing mechanisms for massive star forma-
tion. These are the turbulent core model of McKee &
Tan (2003), the competitive accretion process of Bon-
nell et al. (1997) and stellar collisions and merging of
stars during their preMS evolution or later. It is this
third case that we investigate here.

An alternative model was investigated by Baum-
gardt & Klessen (2011) and it is interesting to com-
pare our results with theirs. They base their pre-
mainsequence evolution on models of accreting stars
constructed by Bernasconi &Maeder (1996). The physics
used by Bernasconi & Maeder (1996) is not very differ-
ent from that used by Tout et al. (1999) and indeed the
evolutionary tracks in the H–R diagram are very sim-
ilar once accretion has ceased and the stars contract
down Hayashi tracks. The major difference between
the models we present here and those of Baumgardt &
Klessen (2011) is that all their stars begin as protostel-
lar cores of 0.1M⊙ and accrete at a constant rate until
they arrive at a suitable mass to populate an IMF up
to 15M⊙. Their stars then undergo a preMS phase in
which the logarithm of their radii shrinks linearly with
time until they reach the ZAMS, whereupon they be-
gin main-sequence evolution. Instead we start with
a set of pre-mainsequence stars with masses populat-
ing a similar IMF up to 8M⊙ that begin their evolu-
tion already fully grown on Hayashi tracks. Our fitting
formulae are a little more complicated because we at-
tempt to to fit both the Hayashi and Henyey phases of
pre-mainsequence evolution together. Because of this
our stars remain larger for longer (see section 4) after
any accretion has ceased. We include this behaviour
in cluster models with a variety of initial conditions to
test its effect.

2 Models

We use the nbody6
1 (Aarseth 1999). This code in-

corporates stellar evolution and binary interaction by
empirical formulae fitted to detailed stellar models.
Two major additions to these standard packages are
required. First we must have a reasonable empirical
representation of how preMS stars, and particularly
their radii, evolve. Secondly we must include a model
of what happens when they collide.

2.1 Parameterization of the preMS
evolution

We construct a set of fitting functions for the preMS
evolution of stars with masses M in the range 0.1 <
M/M⊙ < 8.0. We choose to find analytical fits rather
than to tabulate data in our models because this ap-
proach is in line with the parameterized treatment of
stellar evolution in the other parts of the N -body code.
Such fits also have the advantage that they are con-
tinuous and differentiable and this makes modelling

1This code is available to download at
http://www.ast.cam.ac.uk/research/nbody.
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Figure 2: Fitted preMS radii for 1.0M⊙, 5.0M⊙

and 8.0M⊙ (bottom to top) at τ = 0.8. The solid
lines are the detailed models and the dashed lines
the fits. Note the reversed scale in τ , with τ = 1 at
the beginning of the preMS track and τ = 0 when
the star reaches the ZAMS.

preMS evolution with accretion simpler because the
fits are smooth functions of mass. We began with
detailed stellar models originally constructed by Tout
et al. (1999) with the Cambridge stars code (Eggleton
1971) described by Pols et al. (1995). We used data for
nine stars with solar metallicity Z = 0.02 and masses
M ∈ {0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 8.0}M⊙. These
masses were chosen because stars with M < 0.08M⊙

never meet the ZAMS and for M > 8M⊙ the time-
scale of preMS evolution is short enough that it is safe
to neglect it. The time taken for our 8M⊙ star to
contract from about 90R⊙ to the main sequence is
about 3 × 105 yr. It takes only the first 1.25 × 104 yr
to contract to 40R⊙, a radius it does not exceed again
until it becomes a red giant. It then spends about
5 × 104 yr around 36R⊙ while it burns its supply of
deuterium fuel and then loses its convective envelope,
so moving from the Hayashi to the Henyey phase. In
section 3.2 we compare this with the expected collision
time-scale in the densest clusters that we model. We
find that neglect of preMS evolution for stars above
8M⊙ is reasonable for these clusters but would not be
for much denser systems.

Given the general difficulty of deciding the birth
time of a star and hence its age, we measure the age
of preMS stars backwards from the ZAMS. We there-
fore devise a slightly artificial preMS time-scale τpreMS

by taking the time from which the Tout et al. (1999)
models begin until their radius meets the ZAMS value.
To do this we use the analytic ZAMS radius formula
of Tout et al. (1996). It is a function of mass and
metallicity but all our fits are made for solar metallic-
ity Z = 0.02, for which differences from the detailed
ZAMS models reported by Pols et al. (1995) are at
most 1.2%. It is imperative that these particular errors
are small because all other formulae calculate prop-
erties relative to these ZAMS values. Using a least
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Table 1: Coefficients for equation (3)

i α
(1)
i α

(2)
i α

(3)
i β

(1)
i β

(2)
i β

(3)
i γ

(1)
i γ

(2)
i γ

(3)
i

0 0 -4.00772 1.60324 0 8.5656 -4.56878 0.07432 -4.50678 3.01153
1 0 4.00772 2.20401 0 -8.5656 -4.05305 -0.09430 4.56118 1.85745
2 0 0 -0.60433 0 0 1.24575 0.07439 0 -0.64290
3 0 0 0.05172 0 0 -0.10922 0 0 0.05759

squares method, we fit these times as a function of
mass to get the preMS time-scale in the form

log10

(

τpreMS

yr

)

= 43.6− 35.8

(

M

M⊙

)0.015

× exp

[

3.96× 10−3

(

M

M⊙

)]

(1)

for our mass range. Next we define a scaled time

τ = 1− t/τpreMS (2)

such that time runs from τ = 1 at the beginning of
the preMS track to the ZAMS at τ = 0 and hence τ
is strictly in the range τ ∈ [0, 1]. These functions take
the form

R = RZAMS (M) 10f(τ), (3)

where

f(τ) =
ατ3 + βτ4 + γτ5

1.05− τ
. (4)

For each of the nine models we obtain a best fit for α, β
and γ and then fit these three coefficients as functions
of mass. Several iterations were necessary to converge
on good formulae. The coefficients α, β and γ are
all well represented as piecewise cubics in mass of the
forms

α(j)( M
M⊙

) =
3

∑

i=0

α
(j)
i ( M

M⊙
)i,

β(j)( M
M⊙

) =
3

∑

i=0

β
(j)
i ( M

M⊙
)i (5)

and γ(j)( M
M⊙

) =
3

∑

i=0

γ
(j)
i ( M

M⊙
)i,

where

j =











1 M ≤ 1M⊙,

2 1M⊙ < M < 2M⊙,

3 M ≥ 2M⊙

(6)

and α
(j)
i , β

(j)
i and γ

(j)
i are listed in Table 1. Our fits

(illustrated in Figure 2) are all physically reasonable.
They incorporate both the Hayashi and Henyey tracks.
Sadly the fits are not as accurate as we may have liked.
However we do not wish to make the formulae exces-
sively complicated for what is a rather short phase of
evolution. Our biggest deviations are around 5M⊙,
shown in the figure, for which we overestimate the ra-
dius by a factor of between about 1.25 and 1.5 for
around 20% of its pre-mainsequence lifetime. Aver-
aged over all masses we tend to underestimate as much
as overestimate.

2.2 Treatment of collisions

In addition to the treatment of stellar evolution we
must also consider collisions of preMS stars with them-
selves and stars of other types. We model a collision
between two preMS stars as if both are n = 3/2 poly-
tropes because stars on Hayashi tracks are fully convec-
tive and most collisions occur whilst stars are largest.
The gravitational energy of an n = 3/2 polytrope of
mass M and radius R is

Ω = −
6

7

GM2

R
. (7)

The internal energy of a star in virial equilibrium is

U = −
1

3(γ − 1)
Ω. (8)

This is a reasonable approximation to make because
the preMS stars are in quasi-hydrostatic equilibrium.
For a perfect gas, γ = 5/3, so

U =
3

7

GM2

R
. (9)

We consider a collision between two preMS stars
with masses M1 and M2, radii R1 and R2 and total
mass M = M1 + M2. We assume that colliding stars
merge while a small fraction of the total mass ξM is
lost from the cluster (Davies et al. 1993), and let en-
ergy be conserved during the collision. The two stars
are moving with high velocity when they collide but
the kinetic energy at infinity, or at the apogee of an
eccentric binary orbit, in their relative orbits can be ne-
glected. The initial velocity of the colliding stars would
need to be of order 103 km s−1 to have kinetic energy
comparable to the energy lost with ξM , whereas in
globular clusters and star-forming regions the veloci-
ties are typically 10 km s−1 (e.g. Portegies Zwart et al.
2010). Conserving the internal energy and ignoring
this orbital contribution, we find that the radius R∗ of
the new coalesced star is

R∗ =
7M2

3

(

M2
1

R1
+

M2
2

R2

)−1

(3− 4ξ)(1− ξ) (10)

and its mass is

M∗ = M1 +M2 − ξM. (11)

It is difficult to estimate mass loss in any stellar
collision but, for MS stars, SPH calculations by Benz
& Hills (1987) indicate about 10%. Thus ξ = 0.1.
Laycock & Sills (2005) also found that a mass loss of



4 Publications of the Astronomical Society of Australia

a few per cent of the total mass per collision with a
preMS star is a reasonable approximation. We invert
the R = R(M∗, τ) function (3) to find the rejuvenated
age at which to restart evolution so that the star con-
tinues to contract from its new radius.

The outcome of a preMS/MS collision depends on
the mass of the MS star. Below 0.7M⊙ the MS star is
still mostly convective and, to a good approximation,
the collision remnant can be modelled as above. At
higher masses, the MS star has very little convective
envelope and a dense convective core appears above
1.1M⊙. Mass is therefore most likely to be accreted
on to the surface of the star but not mixed as above
and evolution would not restart on the preMS. All
other collisions with different stellar types are treated
simply as accretion, so the non-preMS stellar type is
kept upon collision and the mass of the star is sim-
ply increased. Such prescription is again supported by
Laycock & Sills (2005) who showed that the collision
product, when the collision involves a preMS star, does
not depend strongly on the impact parameter nor the
initial velocity.

3 Results

Our initial conditions are all Plummer (1911) models
in virial equilibrium with no primordial binary stars.
There is no interstellar gas nor mass segregation. Our
stellar evolution is as described in section 2.1 and by
Hurley, Pols, & Tout (2000) and Hurley, Tout, & Pols
(2002). We use the code nbody6 (Aarseth 1999). To
explore a didactic set of N -body models, we keep the
initial number of stars N , the initial mass function for
the stars and the time-scale of evolution constant in
our series of models. We vary only the half-mass ra-
dius R0.5, the radius within which half the mass of the
cluster is contained. We fix N to be 1 000. For the
masses of the stars we use a modified Kroupa initial
mass function (Kroupa 2001), with Mmin = 0.1M⊙,
Mmax = 4.0M⊙ and M = 0.4M⊙. We chose the
length-scale R ∈ {0.02, 0.05, 0.1, 0.2, 0.4}pc. Our half-
mass densities ρ0.5 range from 103 to 107 M⊙ pc−3.
The half-mass radius R0.5 ≈ 0.8R.

Because our preMS fitting is restricted to the mass
range 0.1 < M/M⊙ < 8.0 (equation 3), if (a) different
IMF parameters were chosen with Mmax ≥ 8.0M⊙ or
(b) several stars collide to form a coalesced star with
M∗ ≥ 8.0M⊙ then these high-mass stars evolve from
the ZAMS. This approximation is justified because the
preMS evolution of stars of these high masses is so
rapid that neglecting it loses little information (see
section 3.2). We evolved each cluster for t = 10Myr,
approximately τpreMS for a 0.5M⊙ star, with the logic
that most interesting preMS behaviour would have oc-
curred by this time. We made ten models for each of
the length-scales, both with, all the stars started at the
top of their Hayashi tracks at τ = 1, and without, all
stars started on the ZAMS at τ = 0, preMS evolution.
We shall hereinafter call these preMS and ZAMS runs
respectively.
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Figure 3: Number of collisions and their averages
for 10 runs with and without preMS evolution for
R = 0.8R0.5 ∈ {0.02, 0.05, 0.1, 0.2, 0.4}pc.

3.1 Densities

Our models have initial half-mass densities in the range
103 < ρ0.5/M⊙ pc−3 < 107. The initial densities for
the smallest clusters seem a little extreme but there is
increasing evidence that the initial densities of open
clusters are higher than previously thought (Parker
et al. 2009), that bound clusters can expand quickly
(Bastian et al. 2008; Moeckel & Bate 2010) and that
rapid expansion can occur in the core (Kroupa et al.
2001). Indeed Table 2 shows that the densest clusters
expand the most because of the longer dynamical time
required and, interestingly, end up with very similar
half-mass radii to clusters that were initially somewhat
sparser. The final densities vary because the initially
denser clusters lose more mass throughout the model.
There is thus some uncertainty in extrapolating back
in time to estimate an initial cluster scaling.

3.2 Collision frequency

First we looked at the number of collisions between
stars for each R with and without preMS evolution.
Averaged over ten simulations, the results are listed
in Table 3, while Figure 3 shows the data and the
averages over the 100 models. As expected, more stars
collided in the initially denser clusters, as did more of
the stars evolved from the top of their preMS tracks.
The stars which collided in the ZAMS models had R ≈
2R⊙ whereas in the preMS runs the radii were at least
twice this when they collided.

The gravitational focusing cross-section for stars
with masses M1 and M2, and radii R1 and R2 is

σ(M1,M2) = π(R1 +R2)
2

(

1 +
2G(M1 +M2)

v2rel(R1 +R2)

)

,

(12)
where vrel is the relative velocity of the two stars at
infinity or at apocentre. Because vrel is usually small,
this reduces to

σ(M1,M2) ∝ (R1 +R2).
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Table 2: Evolution of the half-mass density ρ0.5 = Mtotal/
4
3πR

3
0.5 for R ∈ {0.05, 0.10, 0.20 pc}.

R0.5,initial ρ0.5,initial R0.5,final ρ0.5,final ρ0.5,initial
/pc /M⊙pc

−3 /pc /M⊙pc
−3 /ρ0.5,final

0.039 8.2× 105 0.50 350 2400
0.078 1.0× 105 0.49 380 270
0.16 1.3× 104 0.44 580 22

Table 3: Collision statistics for the models
Mean number of collisions Standard deviation

R/pc preMS ZAMS Ratio preMS ZAMS
0.02 15.6 7.4 2.1 3.22 2.17
0.05 8.1 2.9 2.8 1.73 1.73
0.1 3.3 1.4 2.4 1.63 1.07
0.2 1.8 0.9 2.0 1.62 0.88
0.4 0.6 0.3 2.0 0.84 0.48

Thus doubling the radii of the two stars doubles the
collision cross-section and leads to roughly twice as
many collisions.

To determine whether we are justified in ignoring
the pre-mainsequence evolution of stars over 8M⊙ we
check the collision rate for such stars in our models.
For our densest clusters with a half-mass radius of
0.02 pc the stellar number density n ≈ 9 × 10−16 R−3

⊙

and the typical relative velocity vrel ≈ 11.5 km s−1 ≈
520R⊙ yr−1. We estimate the collision cross-section
by setting R1 + R2 = 100R⊙ and M1 +M2 = 10M⊙

and so find σ ≈ 9 × 106 R2
⊙. From this we estimate a

collision time-scale

tcoll ≈
1

nσvrel
≈ 2.4× 105 yr. (13)

This is just a little shorter than the entire pre-mainsequence
lifetime of 3 × 105 yr for our 8M⊙. We recall that it
actually spends only 1.25 × 104 yr above 40R⊙. So
we can expect stars more massive than 8M⊙ to con-
tract to the main sequence before they collide again,
but only just in our densest cluster models. If we were
to model higher densities we would need to model the
pre-mainsequence evolution of more massive stars.

3.3 Runaways

In nearly every case, these collisions involved one or
two stars colliding many times. We call a star that col-
lides with another more than once a runaway. These
were usually the most massive stars in the initial con-
figuration, with initial masses 3 ≤ Minitial/M⊙ ≤ 4.
Some gained over ten times their initial mass within
10Myr through multiple collisions. Table 4 is a list
of the ten most massive runaways in both preMS and
ZAMS models. This shows that not only do more col-
lisions occur in the preMS models but also that the
runaways end up somewhat more massive. The mean
mass gained by runaways in the preMS models was

12.0M⊙ (averaged over 34 runaways) and 8.8M⊙ (24
runaways) in the ZAMS models.

Portegies Zwart & McMillan (2002) found a simi-
lar phenomenon in their rather extreme models of col-
liding MS stars in dense star clusters where MS/MS
collisions typically form one runaway star. In Monte
Carlo stellar dynamical models Freitag et al. (2006),
while investigating a runaway mechanism to create an
intermediate-mass black hole in compact stellar clus-
ters, also found that only one runaway object was
formed. Our results are in line with these findings.
Thus multiple collisions between preMS stars early on
in cluster evolution can be a viable mechanism to cre-
ate a few massive stars in otherwise low-mass clusters
but is unlikely to be the means to populate the top of
the IMF (Zinnecker & Yorke 2007). This conclusion
was reached by Baumgardt & Klessen (2011) who also
found typically only one runaway massive star in their
simulated clusters.

We found that the characteristic time to the first
runaway is about the same as that to form a small
core, 0.05 pc in radius. The collisions, or merges, then
occur within this core. They also usually take place at
the pericentre of highly eccentric binary orbits. In a
few cases a fly-by was seen to induce collisions between
two stars in an eccentric binary system.

Usually the most massive runaway stars formed in
the very dense R = 0.02 pc model. For R = 0.4 no
runaway stars formed at all and only three formed in
the preMS model when R = 0.2. However there is
significant variation between the models. In the two
least dense models the effect of the preMS evolution
is insignificant because the clusters are sparse enough
that by the time two stars come sufficiently close to
collide the preMS phase is over.
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Table 4: The ten most massive runaways

Model R/pc Minitial/M⊙ Mfinal/M⊙ ∆M/M⊙ Time/Myr1 Number of collisions
preMS 0.02 3.9 34.2 30.3 3.37 18
preMS 0.02 3.6 30.62 27.0 2.56 12
preMS 0.02 2.1 29.9 27.8 5.62 15
preMS 0.02 3.4 26.1 22.7 1.21 13
preMS 0.02 3.5 22.1 18.6 7.4 11
preMS 0.02 3.2 22.0 18.8 2.01 11
preMS 0.05 3.2 21.6 18.4 5.61 7
preMS 0.02 3.7 21.0 17.3 9.57 9
preMS 0.05 3.7 20.9 17.2 5.09 8
preMS 0.02 3.8 20.8 17.0 5.62 14
ZAMS 0.02 2.8 21.1 18.3 1.59 8
ZAMS 0.02 2.7 20.6 17.9 1.99 11
ZAMS 0.02 3.2 20.4 17.2 8.22 7
ZAMS 0.05 3.9 20.0 16.1 2.77 5
ZAMS 0.02 3.3 18.4 15.1 2.19 5
ZAMS 0.05 3.6 16.8 13.2 0.85 4
ZAMS 0.02 3.6 16.7 13.1 3.71 4
ZAMS 0.02 2.9 15.7 12.8 3.85 5
ZAMS 0.05 3.6 15.2 11.6 4.69 4
ZAMS 0.02 3.6 13.5 9.9 6.12 5

1Time is the age of the cluster when the runaway star collided for the last time.
2This star later evolved to a 6.8M⊙ black hole by 8.5Myr and absorbed another preMS star.

4 Conclusions

We have not attempted to create a completely realistic
model of a cluster. The background gas that would ex-
ist in a protostellar cloud has been neglected, as have
the effects of accretion of this gas (see the treatment
by Baumgardt & Klessen 2011). Nor have we mod-
elled the effects of stellar accretion discs which would
enhance the likelihood of collisions and also change
their nature. Our aim here has been to show that
preMS evolution can have important consequences and
to identify when the preMS phase should be considered
in more detail in the future.

It is not straightforward to make a direct compar-
ison with Baumgardt & Klessen (2011) because they
let their stars form by accretion on to 0.1M⊙ cores, at
constant accretion rates to populate the IMF, whereas
we start with an IMF and evolve our protostars as
if they were coeval. However, examining the time-
integrated cross-section of our analytic fits compared
to theirs (see Figure 4) shows that their models sys-
tematically underestimate the radii of the preMS stars
below 6M⊙ compared to ours. This is important when
looking at collision frequencies. Calculating the time
and mass-integrated cross-section

IIMF =

∫ 4.0M⊙

0.1M⊙

∫

τpreMS

η(M)R(M, τ) dτ dM, (14)

where η(M) is the Kroupa IMF normalised so that

∫ 4.0M⊙

0.1M⊙

η(M) dM = 1, (15)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7  8

I/
R
⊙

M/M
⊙

Models
R-T-A fits

B-K fits

Figure 4: The integrated cross-section I =∫
τpreMS

R dτ , taken over the preMS lifetime given
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we find that for the original models IIMF = 11.5, for
our analytic fits IIMF = 12.9 and for the fits of Baum-
gardt & Klessen (2011), IIMF = 7.9. Though we should
therefore expect to find more collisions in the preMS
regime than they do the differences in the models make
it almost impossible to identify whether this is actually
the case.

The inclusion of gas is a natural next step in these
models. We would expect an interplay between gas ex-
pulsion, which decreases the star formation efficiency,
accretion rates and the effect of gas accretion on to
stars. Gas accretion not only leads to larger stars and
hence larger collision cross-sections but, in clusters,
forces contraction of the whole system and thence leads
to more merging stars (Bonnell et al. 1998; Bonnell &
Bate 2002), an increase in the number of binary stars
and early mass segregation (Moeckel & Clarke 2011).

We would also expect our preMS stars to form discs
while accreting or indeed as a result of tidal disruption
during a collision (Davies et al. 2006). The effect of
such protoplanetary discs on the number of collisions,
their outcome and the time-scale on which they take
place should also be modelled in some way and in-
cluded in a more detailed N -body model. Star–disc
interactions can lead to the disc being stripped away
(Hall et al. 1996; Scally & Clarke 2001) or the for-
mation of binary stars (Clarke & Pringle 1993) and,
because many massive stars live in tight binary sys-
tems (Zinnecker & Bate 2002), it will be important to
know whether the preMS phase contributes to this.

In conclusion, although there is much physics that
we have not included, our models show that preMS
evolution increases both the number of collisions, when
the density is sufficiently large, and the amount of
mass gained by the final collision remnants. Most colli-
sions are part of a runaway process so preMS collisions
alone are probably insufficient to populate the upper
IMF. We identify an initial half-mass cluster density
of 104 M⊙pc

−3 below which preMS evolution can be
neglected because collisions are sufficiently rare. How-
ever caution should be exercised owing to large uncer-
tainty in the early length scales of clusters.
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