Building a CRF with Gaia

François Mignard

UNS/CNRS /Observatoire de la Côte d'Azur

CRF : Celestial Reference Frame

Goal & Outline

• Explain the reference frame issue with Gaia and how one will construct an ICRF in the optical domain

- reference frames and fundamental catalogues
- QSOs with Gaia
- QSO catalogues
- Building the Gaia ICRF : principles
- Gaia Global Astrometry solution
- Infinitesimal rotations
- Spin of the Gaia frame
- Alignment of the Gaia frame to radio ICRF

Lecture 1

Lecture 2

• Pre-existing reference graticule

Reference frame : fundamental view

• Stellar sources as fiducial points

How to plot a star atlas

- One read star coordinates α, δ are read in a catalogue
- someone created this catalogue
- One must draw the map grid in the background
- No direct access on the sky
- What comes first : the stars or the reference grid ?
- One needs fundamental observations at some point

⁻ Hipparcos, Gaia

Classical Astronomical Reference Frames

- Astronomical catalogues
 - Large full sky astronomical catalogues widely available in 1970
 - •BD (1860) & Cordoba (1890) with 700,000 stars
 - •HD (Henry Draper) since 1920, 230, 000 entries with spectral type
 - •SAO (1966) with 270,000 stars with positions and PM
 - Positions and PM based on an existing reference frame
- Fundamental catalogues
 - Absolute observations with no reference to previous determinations
 - Historically tied to the equator and equinox at a particular epoch
 - •assumed to provide absolute and inertial orientation
 - observations of the Sun or planets mandatory

Fundamental Catalogues

Gaia DPAC

• Small catalogues, many years of tedious labour to get absolute positions

- 1790	Maskelyne	36	zodiacal stars, one epoch
- 1818	Bradley/Be	ssel3000	no PM, nearly fundamental
- 1830	Bessel	36	with PM, + precession
- 1878	FK1	539	
- 1898	Newcomb	1297	Start of the GC series
- 1907	FK2	925	
- 1937	FK3	873	1st IAU supported international RF
- 1963	FK4	1535	σ ₁₉₅₀ ~ 0"07- 0"15, σ ₂₀₀₀ ~ 0".15-0"30
- 1988	FK5	1535	σ ₂₀₀₀ ~ 0".05 - 0"10
- 1997	Hipparcos	100,000	(quasi fundamental)
- 1998	ICRF	212	
- 2009	ICRF2	295	

Limitations of the classical approach

Gaia DPAC

- System defined with equator and equinox
- precession and nutation modelling
 - fixed frame linked to solar system with equinox
- Observations from the ground
 - many stations needed to cover the sky
 - disturbances from the atmosphere
 - go to space for global astrometry → Hipparcos
- System based on stars
 - problems with proper motions, multiplicity
- distant sources > already considered by W. Herschel & Laplace
 - Adopted in ~ 1990 with ICRS and ICRF1 in 1998, ICRF2 in 2009

Gaia

 σ ~ 50 to 150 μ as

 σ ~ 0.2 to 2 mas σ ~ 0.5 to 10 mas

defining (294)
VLBI (923)
VLBA Calib. (2197)

- Most luminous objects in the Universe
 - 10^{11} 10^{14} L_{sun} ; 1 to 1000 L_{galaxy} ; M_B ~ -23 to -30 ; 10^{37} - 10^{41} W
- Radio loud (*quasars*) or radio quiet (*QSO*)
- Variability over days to months
 - size of the emitting core ~ few solar systems to 0.1 pc
- Seen at great distance, then large redshift
 - 0 < z < 5; > 10 billions years in the past
- Paradigm for their structure
 - accretion onto a massive black hole (10⁸ solar mass)
 - one Sun per year is swallowed to sustain the luminosity

•Mc² / 1 yr = 2×10^{47} J / 3×10^{7} s ~ 10^{40} W = 10^{47} erg s⁻¹

Fact Sheet II

- Difficult to identify from the stars:
 - point like source, with faint and diffuse host galaxy
 - Faint, rare and starlight aspect on plates or CCDs
- Energy distribution : different from stars
 - 10^{11} $10^{14}~~L_{sun}~~;~1~~to~1000~~L_{galaxy}$; $~M_B$ ~ -23 ~to~-30
 - Strong and broad emission lines (E.W. ~ 60 Å ~ 10 000 km/s)
 - Blue bump
- This difference is the key feature for identification with Gaia

Energy distribution

Santiago, 3/10/2014 - F. Mignard

Energy distribution

Gaia DPAC

- QSOs will be observed like stars
 - point like sources
- They will be detected in the Sky Mapper when G < 20
- Sky coverage and astrometric performances will be the same as for stars of same magnitude
 - no specific colour problems are expected
- They will be observed about 80 times
 - distributed more or less regularly during the mission
 - min ~ 45 times, max ~ 150 times
- Astrometric and photometric processing will be standard
 - global solution for astrometry
 - epoch photometry at each transit

Observation distribution (galactic coordinates)

- Time average is a combination of the sky distribution and the scanning law
 - two different symmetries: galactic plane and eclitpic plane

Astrometric Accuracy : EOM (up-to-date)

Actual mission: Astrometric loss

- Straylight coming from the Sun and the sky background
 - although this remains very small, it impacts the final accuracy
 - •less for astrometry than photometry
 - •less for photometry than for spectroscopy

QSO recognition with Gaia- I

- ~ 2/3 of the QSOs of the Gaia survey will be new
- They must be identified by a built-in mechanism
- The baseline is photometric identification
 - use of the BP/RP dispersed images
- Additional hints
 - proper motion
 - parallaxes (of non QSOs)
 - host galaxy ?
 - ground based data

Gaia DPAC

• Two purposes:

- Select a clean small sample of QSOs free of stellar contaminants
- Identify the majority of the QSOs in not a so clean sample
- Remaining possible contaminants:
 - very red (M stars), or highly reddened stars
 - peculiar white dwarfs

could be removed with parallax and proper motions

- Classification methods very advanced
- Intensive activity over the last five years
 - led initially by J.F. Claeskens (Univ. of Liège, Belgium)
 - then continued by C. Bailer Jones and K. Smith in MPIA Heidelberg

QSOs in Gaia RP/BP - simulation

Santiago, 3/10/2014 - F. Mignard

Etoile - Galaxie active avec Gaia

21/02/2014 23:49:03

25/04/2014 21:08:24 crédit : ESA/Gaia/DPAC/Airbus DS Probability classification: principles

- Gaia DPAC
- An object will be a star, a galaxy or a QSO with a probability p
- Population with frequency f of QSOs and H_0 : source is a QSO
 - The test can wrongly reject a QSOs $\,:\,$ risk of the test α
 - 1- α : significance level
 - The test can keep a star in the QSO sample : risk of contamination β
 - 1 β : power of the test

	State		
		QSO	Star
Found	QSO	1-α	β
1 ound	Star	α	1- β

P(S/FQ): this is a Star when Found as a QSO $P(S/FQ) = \frac{(1-f)\beta}{f(1-\alpha) + (1-f)\beta}$

if $f \ll \beta$ then P(S/FQ) ~ 1! All purported to be quasars are indeed stars

So the efficiency β must match the frequency of the QSOs

With f ~ 1/2000 $\rightarrow \beta$ < 0.0005

• A survey over 100 deg⁻² with a 1% error selection test will yield :

- 2000 quasars (max) and
 - 30 000 stars at $b = 0^\circ$ ==> efficiency of 3%
 - 3000 stars at $b = 60^{\circ}$ ==> efficiency of 40%

- GAIA will observe ~ 500 000 QSOs G< 20
- ~ 10 9 stars : so classification test better than 2x10 $^{-3}$

Current performances

• G > 17 for this test

found kind	Star	QSO	Galaxy	unknown	total
Star	82	0.1	2	16	100
QSO	1.2	81	2	15	100
Galaxy	1.3	0.1	92	6.5	100

- For QSOs
 - Completeness ~ 80%
 - Contamination level ~ 0.1% by stars

credit: K. Smith

Absolute contamination

- Pessimistic approach : 0.1% of the stars are wrongly classified as QSOs
 - 10^9 stars \rightarrow 1 million will fall in the QSO basket !
 - This amounts to 200% contamination in the survey
- More realistic approach : most stars are close to the Galactic plane, where QSOs are not seen
 - Sky outside galactic plane, nearly empty
 - Typically 1000 3000 */deg² to G = 20 → 0.1% contaminant = ~ 2 */deg²
 - for QSO one has about 20 QSO/ */deg 2
 - True contamination should be about 10% or 50,000 stars in the QSO survey

Robin et al., A&A, 2012

Gaia

5.5

5.0

- Gaia detects and observes all the sources V < 20
- There are ~ 6×10^5 QSOs observable outside the galactic plane
- They are recognized from the stars with the photometric data
 - success rate > 99.9%
- A clean subset will be used for the primary reference frame
 - One assumes that there is a frame with no global rotation
- Systematic effects will be investigated in the residuals

Number of catalogued QSOs

- Gaia DPAC
- Number of entries in the Véron-Cetty Véron releases

Mignard, 2012 - data from Véron-Cetty & Véron, A&A 2010

Latest QSO compilation

- Catalogue LQAC (Souchay et al, 2012)
 - Plots in equatorial coordinates
 - similar results with Véron & Véron (Véron et al., 2012)

Latest QSO compilation

- Catalogue LQAC (Souchay et al, 2012)
 - Plots in equatorial and galactic coordinates

G magnitude distribution

- Computed from colors available in LQAC
 - with magnitude transformations for Gaia (C. Jordi, 2008)
- Obvious completeness bias

LQAC, G < 20.5 - 153,000 sources bins : 0.2 mag How many QSOs on the whole celestial sphere

Gaia DPAC

- Simple approach
 - LQAC has
 - 15800 G < 18 & 127000 G< 20
 - They cover roughly 25% of the sky
 - Therefore one may expect
 - 65000 G < 18 & 500,000 G < 20
- Better evaluation
 - one assumes that the QSOs are uniformly distributed on the sky
 - Density in local deep surveys used to compute the expected number of QSOs per bin of magnitude and square degree
 - try to devise a robust estimate of this density

Gaia DPAC

• Robust estimate of the QSO density for G < 20

Mignard, 2012, Mem. Soc. Ast. It., 83,2012.

How many new QSOs

- Density in local deep surveys used to compute the expected number of QSOs per bin of magnitude
- On subtracts the number in the current general catalogue
- assumption: QSOs have a uniform distribution on the sky

V	density deg ⁻²	Full sky #	60% sky #	known #	new #	Slezak et.al #
18.0	1.5	63 000	38 000	12 500	25 500	40 000
18.5	3	126 000	75 000	23 000	52 000	113 000
19.0	8	340 000	200 000	45 000	155 000	314000
19.5	15	630 000	380 000	85000	295 000	680 000
20.0	22	920 000	550 000	115 000	435 000	1 200 000
20.5	30	1260000	750 000	140 000	610 000	1700000

Mignard, 2012, Mem. Soc. Ast. It.,

from Robin et al., 2012

Selection of QSOs

- Gaia DPAC
- Start from the full-sky simulation to G = 20.5 from Slezak & Mignard
 - 1.7×10^6 QSOs with realistic luminosity function
- Allow for a degrading recognition efficiency of Gaia at faint end
 - less sources will be recognized as genuine QSOs
- Lower the detection efficiency in the Galactic plane
 - crowding and absorption

 Magnitude distribution, including the degrading detection efficiciency

QSOs - G < 20 - 630,000 simulated sources bins : 0.1 mag

Sky distribution

- about 650,000 QSOs with G < 20
 - based on Slezak & Mignard simulated catalogue (2008)
 - Simple probabilistic extinction model
 - magnitude cut to account for the detection inefficiency

QSO Simulation: alternative selection

• about 700,000 QSOs with G < 20

- based on Slezak & Mignard simulated catalogue (2008)
- CU2 UM extinction model and realistic distribution in G
- space distribution very similar to 7F QSOs

Gaia pre-launch QSO List - A. Andrei

Gaia DPAC

- GWP-S-335-13000 is the Work Package
 - GIQC : Gaia Initial QSO Catalogue
- Catalogue with 1.250,000 entries
 - 3 levels implemented: defining, candidates, and others
 - 190,000 defining with good spectroscopic redshifts
 - \rightarrow 174,000 entries in the IGSL released September 30th
 - astrometric accuracy ~1 arcsec.

•except for the ICRF-2 sources

- •this is enough for matching observations
- Morphology and the signature of the host galaxy.
 - implemented flag from DSS images (92% R, 60% B, 56% IR).
 - automated SHARP, GROUND, SROUND IRAF's PSF analysis

Reference frame with Gaia: Principle

Gaia DPAC

- Different from Hipparcos :
 - no link, primary frame determined \rightarrow alignment to ICRF
- Gail will Observe extragalactic sources in the visible
- There are plenty brighter than V = 20
 - about 500,000 observable with Gaia \rightarrow smaller sample selected
 - 20,000 V < 18
- Look for the anomalous proper motions to clean the sample
- The remaining set will display an overall spin
- Find ω and apply $-\omega$ everywhere
- The results will be referred to the best non-rotating frame
 - paradigm of the ICRS
- The orientation will be fixed with a small set of ICRF sources

A simplified Gaia

- Wide angle measurements between two FOVs
- One common focal plane where local measurements are done
- A stable angular standard is the heart of the metrology

Santiago, 3/10/2014 - F. Mignard

Simplified Gaia and Reference Frame

- Assume stars are relatively fixed to each other
 - no parallax, no proper motion
 - a set of point sources on a 2D sphere
- Gaia is essentially measuring great circle distance between stars
- After 5 years of scans, arcs are accurately measured between each star and at least ~ 50 (much more for real Gaia)
- When all these arcs are combined together there is a single way to place the sources on the surface of a sphere, except for a global orientation
 - the network is very rigid but can rotate like a rigid body
- Therefore without additional constraint the absolute position cannot be deduced from the measurements alone
- The underlying mathematical structure is singular

Reference system with low-cost Gaia - I

- Construction of a spherical networks of quasars
 - measure of arc between sources belonging to the two FOVs
 - the arc-lengths between sources are globally accurate and precise
 - the accuracy is typically the Gaia astrometric accuracy
 - there are many binary connections and the system is overdetermined

$$n \text{ stars } \Rightarrow \rho \sim \frac{n}{41200} * / \text{deg}^2$$

FOV width $0.8^\circ \Rightarrow \delta n \sim \rho^* 360^* 0.8^* \sin(106.5)$

- with the 40,000 brightest QSOs : each source directly connected to 250 others

 $\boldsymbol{\cdot}$ many indirect connections with fainter sources and stars

Santiago, 3/10/2014 - F. Mignard

Reference system with low-cost Gaia - II

- This results into a rigid astrometric solution
 - the sphere of sources reproduces what we have on the sky
 - the overall rigidity is about $\sigma/\sqrt{\delta n}$
- But the overall system is rotationally invariant
 - arc-lengths are not tied to a particular orientation
 - the system is not tied the any privileged frame

•inertial, ICRF ... \rightarrow its orientation must be constrained to be useful

- if the solution allows for proper motions, then there is a global rotation

rotation must constrained as well

Reference system with low-cost Gaia - II

• For real Gaia :

- rotation constrained by a physical assumption

•QSOs have no global rotation wrt to cosmological restframe

- •this has a deep underlying physical significance
- orientation is constrained to maintain continuity with previous frames
 - this has no particular physical meaning
 - ·but an overwhelming practical importance

• Orientation is performed by minimizing the distances between Gaia positions and ICRF positions of common sources

True Gaia

- Stars have parallaxes
 - the parallactic displacements are geometrically tied to the Sun
 - they are very different between pair of connected stars
- The whole system is no longer rotationally invariant
 - the mathematical system is no longer singular but at least ill-conditioned
- Our mathematical model is linearised around approximate positions
 - the solution cannot be very very different from these initial values
- We use an attitude catalogue which materialises a reference frame
- The unconstrained solution is not fully free in orientation, but the frame is not robust against normally harmless changes:
 - weighting, attitude nodes, primary star selection ...

- Astrometric solution is mathematically not singular
- For practical purposes the frame orientation must be constrained
 - with proper motions its rotation as well
- If we ignored 2000 years of astronomy, we could set the orientation to our fancy
- If we ignored 500 years of modern physics we could make Gaia solution on merry-go-round
- The best is to maintain metrological continuity and to adhere to the overall principles set by the ICRS

What's next

Global astrometric solution

Making Gaia frame inertial

Align Gaia frame to ICRF