Binary

July, 2012

Journal of the Double Star Group

Adviser and editor: Dr. John McCue, FRAS

A publication of the Deep Sky Section, Director: Callum Potter,

British Astronomical Association

Contact: J. McCue, 40. Bradbury Road, Stockton-on-Tees, TS20 1LE john.mccue@ntlworld.com Tel: 01642 892446

Double star catalogue

by John McCue

In the first issue of Binary, the Cambridge Atlas of Double Stars by Wil Tirion and James Mullaney was reviewed by Simon Johnson (CUP, ISBN 978-0-521-49343-7 in paperback). In the first part of that book, the authors present a list of showpiece doubles which everyone should see. This particular portfolio shows the wide variety and the spectacular sights that double stars bring to the observer at the telescope. Famous examples such as the Trapezium in the Orion Nebula, the Double-Double in Lyra, Regulus, Albireo, Sirius, Mizar and Alcor, Vega, Delta Cephei, Castor and Rigel are all there.

Working through this list, I realised that many of them I hadn't seen before, and some of them, like Regulus and Rigel, were so familiar as naked-eye stars that I had never looked at them through a telescope for many years. I didn't even know that some of these well-known stars were duplicate in nature. This is definitely a collection of celestial wonders to see before you die, to coin a popular phrase. I checked which ones were visible from the UK. That left 101 in the list, out of the original 133. This reminded me of the Messier and Caldwell catalogues so I made a separate inventory, adding the position angles and checking other details. The 101 showpiece doubles from the original list by Tirion and Mullaney in the Cambridge Atlas are on pages 5 and 6 of this issue.

If any observers would like to share their experiences of observing these gems, whether with sketches, images, descriptions or measurements, I would be glad to disseminate through this publication.

In Fig.1 is an image of D6, 57 Aql, which I took with the 2m Faulkes Telescope Souh at Siding Spring, Australia, on July 8 this year. The field of view is 10' by 10', and I measured the position angle and separation using the free image analysis software Aladin, arriving at 169.6° with error 0.1°, and 35.5", error, 0.1". Using Aladin, I also downloaded the same field of view from the 2MASS and crosschecked the stars visible. No objects were visible that were not in the archive 2MASS image.

Aquila is obviously visible from the UK this summer, and at magnitudes 5.7 and 6.4 this is one the showpieces that it would be easy to find this season.

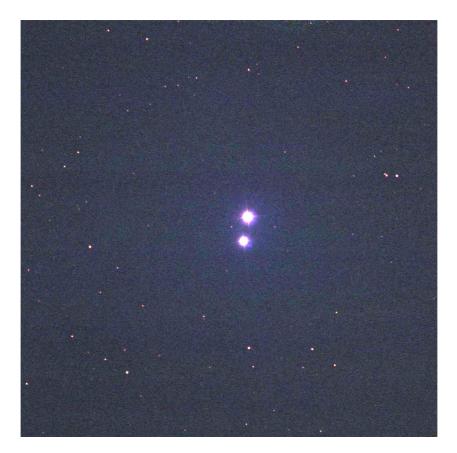


Figure 1: D6, 57Aql

Double star discussion group on Yahoo

by John McCue

The Yahoo group of double star observers recently spotted, in the April, 2011, issue of Binary, the article on measurement of position angle and separation using a crosshair eyepiece and a stopwatch. They very kindly distributed it to their group, and allowed me to join their enterprise.

The group can be found at Yahoo with the title Double Star Imaging, where application for membership can be found.

A New Pair to the Left of Spica

Discovered by Abdul Ahad

First observed: 24th May 2011, 2145 UT

From the USNO Image and catalog archive, I estimate this pair is located at approx. RA: 13 55 57.3, Dec: -11 57 30 and is not listed in the current edition of the Washington Double Star Catalogue.

Very faint, both stars are about mag 10.5 and I estimate a separation of roughly 30", but the position angle is not as yet decided. My own field drawing at x 100 magnification on my 8-inch Newtonian (South up):

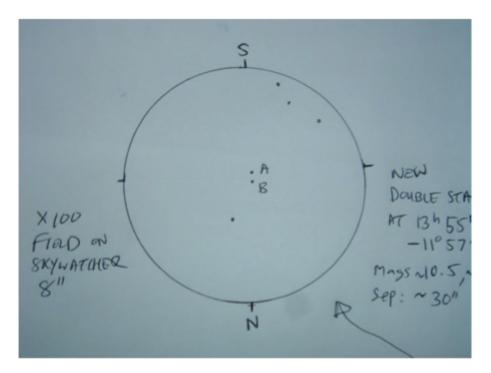


Figure 2: Sketch of new double by A. Ahad. Star A is TYC 556-1449-1, and B is TYC 556-1369-1

[Editor: I downloaded an archive POSS image and measured the position angle as 160° with error 1°, taking B as the primary star. The stars are of equal brightness, to one decimal place. Curiously, a later image from the 2MASS of 1998 showed that A (in Abdul's sketch) now had a fainter star close to it, as in the image below. Is it a companion that has emerged from behind or in front of the star A? Or is it an asteroid that has grazed or occulted A? I tried to find another archive image of a later date to see if the interloper was still there, but I could not find such an archive image. If anyone is able to help, please let me know. Note that N is upwards in this 2MASS image.]

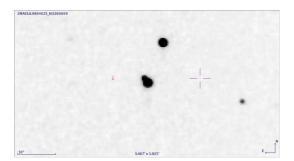


Figure 3: 2MASS archive image showing new arrival near star A

A New Visual Double Star in Serpens

Discovered by Abdul Ahad

First observed: 29th April 2011, midnight. This pair is located at RA: 15 46 18.197, Dec: +13 45 43.19 and is not listed in the current edition of the WDS Catalogue.

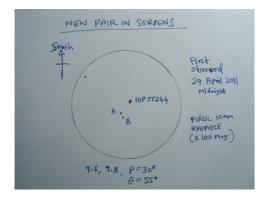


Figure 4: Sketch by A. Ahad

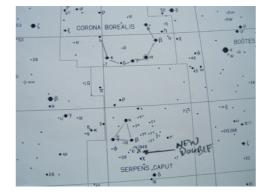


Figure 5: Star atlas showing position

Above is my sketch showing the double (labelled as A and B), close to the 8th magnitude star HIP77244 in Serpens. I made a provisional measurement of this pair using my Meade MA 12mm Astrometric Eyepiece on my Skywatcher 8-inch on 1st May 2011 as follows: position angle: 55 degrees (error 5 deg.), separation: 30 (error 0.5"). The pair is of magnitudes 9.6, 9.8 and is to be found below the Crown of Corona Borealis, as in Fig.5.

Double star catalogue

	Double	RA	Dec.	Mags	PA (°)	Sep (")
D 1	56 And	01 56	37 15 N	5.7 5.9	299	190
D 2	γ And	02 04	42 20 N	2.3 5.5 6.3	Triple	10,0.4
D 3	ζAqr	22 29	00 01 S	4.3 4.5	169	2
D 4	94 Aqr	23 19	13 28 S	5.3 7.0	351	12
D 5	15 Aql	19 04	04 02 S	5.5 7.2	210	38
D 6	57 Aql	19 55	08 14 S	5.7 6.4	170	36
D 7	γ Ari	01 54	19 18 S	4.5 4.6	1	8
D 8	λAri	01 58	23 36 N	4.9 7.7	47	37
D 9	θ Aur	06 00	37 13 N	2.7 7.2	309	4
D 10	к Воо	14 14	51 47 N	4.5 6.6	235	14
D 11	п Воо	14 41	16 25 N	4.9 5.8	110	6
D 12	ζ Βοο	14 41	13 44 N	4.5 4.6	293	0.7
D 13	ε Βοο	14 45	27 04 N	2.6 4.8	344	2.9
D 14	ξ Βοο	14 51	19 06 N	4.8 7.0	306	6
D 15	μ Воо	15 24	37 23 N	4.3 7.1 7.6	170	107,2.2
D 16	32 Cam	12 49	83 25 N	5.3 5.8	326	22
D 17	ζCnc	08 12	17 39 N	5.3 6.3 6.2	73	0.9,6
D 18	i Cnc	08 47	28 46 N	4.1 6.9	307	31
D 19	a CVn	12 56	38 19 N	2.9 5.5	229	19
D 20	a Cma	06 45	16 43 S	8.5 -1.5	92	7
D 21	h 3945 (CMa)		23 19 S	5.0 5.8	52	27
D 22	a Cap	20 18	12 33 S	4.2 3.7	Quadruple	381
D 23	σ 3053 (Cas)		66 06 N	5.9 7.3	70	15
D 24	η Cas	00 49	57 49 N	3.4 7.4	322	13
D 24 D 25	i Cas	02 29	67 24 N	4.6 6.9 8.4	Triple	2.5,7
D 26	σ Cas	23 59	55 45 N	5.0 7.2	328	3
D 27	β Cep	21 29	70 34 N	3.2 7.9	249	13
D 28	Σ2816 (Cep)	21 39	57 29 N	5.7 7.5 7.5	Triple	12,20
D 20 D 29	Σ2840 (Cep)	21 52	55 48 N	5.6 6.4	196	18
D 30	22040 (Cep) ξ Cep	22 04	64 38 N	4.4 6.4	274	8
D 30 D 31	δ Cep	22 29	58 25 N	3.5-4.4 6.1	191	41
D 31 D 32	γ Cet	02 43	03 14 S	3.6 6.2	298	3
D 33	24 Com	12 35	18 23 N	5.2 6.3	271	20
D 33 D 34	ζ CrB	15 39	36 38 N	5.0 5.9	306	6
	·			5.6 6.5	238	7
D 35	σ CrB	16 15 12 30	33 52 N 16 31 S	3.0 8.5	216	25
D 36	δCrv			3.4 4.7	54	35
D 37	βCyg	19 31	27 58 N	2.9 6.3	219	2.5
D 38	δCyg	19 45	45 08 N		132	39
D 39	16 Cyg	19 42	50 32 N	6.0 6.2	Triple	106,331
D 40	31 Cyg	20 14	46 44 N	3.8 7.0 4.8	151	31
D 41	61 Cyg	21 07	38 45 N	5.3 6.1 4.5 5.0	265	9
D 42	γ Del	20 47	16 07 N			3,90
D 43	16,17 Dra	16 36	52 55 N	5.4 6.4 5.5	Triple	2.3
D 44	µ Dra	17 05	54 28 N	5.7 5.7	6	
D 45	v Dra	17 32	55 11 N	4.9 4.9	312	63 30
D 46	ψDra	17 42	72 09 N	4.6 5.6	16	30
D 47	40, 41 Dra	18 00	80 00 N	5.7 6.0	Triple	19
D 48	32 Eri	03 54	02 57 S	4.8 5.9	348 Triple	7
D 49	40 Eri	04 15	07 39 S	4.4 9.5 11.2	Triple	83,9
D 50	δ Gem	07 20	21 59 N	3.6 8.2	228	6

Double star catalogue

	Daubla		Dee	Mana	DA (⁰)	Con (")
5 51	Double	RA	Dec.	Mags	PA (°)	Sep (")
D 51	a Gem	07 35	31 53 N	1.9 3.0 8.9-9.6	56 15	01,04,1971
D 52	к Her Х.Uer	16 08	17 03 N	5.1 6.2	286	27 11
D 53	δHer	17 15	24 50 N	3.1 8.3	104	5
D 54	a Her	17 15	14 23 N	3.5 5.4	319	
D 55	ρ Her	17 24	37 09 N	4.5 5.4	257	+ 6
D 56	95 Her	18 02	21 36 N	4.9 5.2		14
D 57	100 Her	18 08	26 06 N	5.8 5.8	183	3
D 58	εHya	08 47	06 25 S	3.5 6.7	306 Outodrupio	
D 59	8 Lac	22 36	39 38 N	5.7 6.3 10.5 9.1	Quadruple	22,49,82
D 60	a Leo	10 08	11 58 N	1.4 8.2	307	176
D 61	γ Leo	10 20	19 51 N	2.4 3.6	126	5
D 62	54 Leo	10 56	24 45 N	4.5 6.3	111	6
D 63	γ Lep	05 44	22 27 S	3.6 6.3	350	97
D 64	a Lib	14 51	16 03 S	2.7 5.2	313	230
D 65	12 Lyn	06 46	59 27 N	5.4 6.0 7.1	Triple	1.7,9
D 66	38 Lyn	09 19	36 48 N	3.9 6.1	226	2.6
D 67	a Lyr	18 37	38 47 N	0.0 9.5 9.5	Triple	78,118
D 68	εLyr	18 44	39 40 N	5.0 6.1 5.3 5.4	Double-double	2.1,2.4
D 69	ζLyr	18 45	37 36 N	4.3 5.6	149	44
D 70	βLyr	18 50	33 22 N	3.3-4.3 6.7 9.9 9.9		46,67,86
D 71	δLyr	18 54	36 58 N	4.5 5.6	294	630
D 72	εMon	06 24	04 36 N	4.4 6.6	27	12
D 73	β Mon	06 29	07 02 S	4.6 5.0 5.3	Triple	3,7
D 74	o Oph	17 18	24 17 S	5.2 6.2	355	10
D 75	70 Oph	18 06	02 30 N	4.2 6.2	129	5
D 76	β Ori	05 14	08 12 S	0.3 6.8	204	10
D 77	η Ori	05 25	02 24 S	3.1-3.4 4.9	78	1.7
D 78	δOri	05 32	00 18 S	2.4 6.8	0	53
D 79	λOri	05 35	09 56 N	3.5 5.5	44	4
D 80	θOri	05 35	05 23 S	6.6 7.5 5.1 6.4	"Trapezium"	9,13,13
D 81	ı Ori	05 35	05 55 S	2.9 7.0	141	11
D 82	σ Ori	05 39	02 36 S	3.7 8.8 6.6 6.3	Quadruple	12,13,42
D 83	ζOri	05 41	01 57 S	1.9 3.7 8.5	166	2.5,60
D 84	ε Peg	21 44	09 52 N	2.5 8.7	321	144
D 85	η Per	02 51	55 54 N	3.8 8.5	301	28
D 86	ψ-1 Psc	01 06	21 28 N	5.3 5.5	159	30
D 87	ζ Psc	01 14	07 35 N	5.2 6.2	63	23
D 88	a Psc	02 02	02 46 S	4.1 5.2	263	1.9
D 89	ξ Sco	16 04	11 22 S	4.9 7.3	46	8
D 90	β Sco	16 05	19 48 S	2.6 4.5	20	14
D 91	v Sco	16 12	19 28 S	4.4 5.3 6.6 7.2	336	1.3,2.4
D 92	a Sco	16 29	26 26 S	1.0 5.4	277	2.5
D 93	ð Ser	15 35	10 32 N	4.2 5.2	172	4
D 94	θ Ser	18 56	04 12 N	4.6 4.9	104	22
D 95	θ 1,2 (Tau)	04 29	15 52 N	3.4 3.9	348	337
D 96	Σ742 (Tau)	05 36	22 00 N	7.1 7.5	275	4
D 97	6 Tri	02 12	30 18 N	5.3 6.7	69	. 4
D 98	ξUMa	11 18	31 32 N	4.3 4.8	197	1.7
D 99	ζUMa	13 24	54 56 N	2.2 3.9 4.0	152	14,708
D 100	a UMi	02 32	89 16 N	2.1 9.0	216	19
D 101	γ Vir	12 42	01 27 S	3.5 3.5	14	1